
J. Fluid Mech. (2004), vol. 517, pp. 209–228. c© 2004 Cambridge University Press

DOI: 10.1017/S0022112004000643 Printed in the United Kingdom

209
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Some model problems are considered in order to investigate wetting failure in liquid–
liquid systems. Three geometries are considered, two-dimensional two-phase shear
flow, two-dimensional driven capillary rise, and both two- and three-dimensional two-
phase driven cavity flow. In the first two cases, the two fluids are made equiviscous.
The driven cavity flow is investigated for both equi- and non-equiviscous fluids.
Three methods of analysis are used for the equiviscous case, an essentially exact
Fourier series method, a quasi-parallel approximation and a phase-field model. The
Fourier series validates the phase-field method in that they both give nearly identical
results for onset of instability. At relatively large slip length divided by channel width
(10−2), the capillary number at which onset of wetting failure (entrainment of the
receding fluid in the advancing) occurs is highly dependent on the type of flow. This
dependence, however, appears to diminish rapidly as the slip length becomes smaller.
The capillary number for the onset of instability is moderately dependent on gravity
level.

Three-dimensional phase-field calculations are then discussed that show wetting
failure through tipstreaming and splitting instabilities. Spot checks indicate that
the onset points of two- and three-dimensional instabilities are very close. It is
hypothesized that tipstreaming can be understood in part as a quasi-two-dimensional
phenomenon.

1. Introduction
In successful dynamic wetting of a solid, the advancing fluid completely displaces

the receding. When the liquid advances at too high a speed, however, some of the
receding fluid is engulfed as a film or as droplets or bubbles. Understanding of what
determines the transition to wetting failure is still very limited. Still unknown are the
relative importance of nanoscale, mesoscale and macroscale (experiment or process
scale) effects.

This paper applies three different approaches to calculating wetting failure in
liquid–liquid systems: quasi-parallel analysis; diffuse-interface numerical simulations
using a phase-field model of capillarity; and numerical solutions using Fourier series
solutions of the full Stokes equations with sharp interfaces. The goal of this work
is to be able to calculate three-dimensional tipstreaming instabilities at wetting lines.
The phase-field approach shows promise for this because it has diffusive mechanisms
to deal with and resolve the wetting and interface-tearing near-singularities that
occur in wetting tipstreaming flows and because it can deal with complicated
and multiple interfaces. However, it can be a difficult and sometimes expensive
method. The tipstreaming problem is therefore approached through some easier two-
dimensional wetting problems for which the quasi-parallel and Fourier series methods
are applicable and results from the three methods can be compared. In this way, we
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Figure 1. Interface for the shear-flow equiviscosity case with oppositely moving walls and
opposite wettabilities. The interface is antisymmetric about x =0, where x is the horizontal
coordinate. Gravity points to the right toward the denser fluid.

attempt to build confidence in the phase-field method, which is then briefly applied
to the full problem of three-dimensional tipstreaming.

Kistler (1993) gives perhaps the best review of wetting failure. The usual assumption
is that failure occurs as the dynamic wetting angle approaches 180◦. This has been
frequently observed for liquid–air systems, but, as will be shown, does not hold for
liquid–liquid wetting. Near the threshold of wetting instability, the contact line often
becomes corrugated and then V-shaped (Blake & Ruschak 1979; Burley & Jolly 1984;
Ghannam & Esmail 1993). Blake & Ruschak have hypothesized that these V shapes
form because they effectively reduce the speed of wetting (the velocity component
normal to the wetting line is reduced). Experiments by Simpkins & Kuck (2000, 2003)
have shown that the Vs can elongate and become subject to tipstreaming. There seem
to be no previous computations of tipstreaming during wetting. Calculations have
been made for tipstreaming from cusps on bubbles in extensional flow (Siegel 2000;
Eggers 2001; Eggleton, Tsai & Stebe 2001).

For both two and three dimensions, wetting failure can be investigated in what are
essentially two-phase driven cavities with Stokes flow (Somalinga & Bose 2000). We
consider three particular cases. In the first, shown in figure 1, both walls move at the
same speed in opposite directions – a Couette-like flow. This case is symmetrized, for
reasons given below, by the walls having opposite wettability. The second case has the
walls moving in the same direction. This case is given the constraint of no net flow
of fluid (endwalls at ±∞). The resulting flow is like a pressure-driven capillary-rise
or slug flow, with the rise speed equalling the negative of the speed of the walls.
The third case has one wall moving and the other fixed, again with the constraint
of there being no net flow of fluid. This is like the classic driven cavity flow. The
wetting angle at the unmoving wall is taken to be 90◦. This is the case investigated by
the three-dimensional calculations. Gravitational forcing can be included in all these
flows.

The Couette flow case would be the most difficult to carry out experimentally,
but its symmetry gives some advantages in illustrating and discussing basic concepts.
It is the only case that allows the application of quasi-parallel modelling, which
is useful for making calculations that can resolve very small slip lengths (often
nanometer scale). The particular set of conditions that allows the application of
quasi-parallel modelling is when the two plates have opposite wettability. In this case,
if the equilibium contact angles are high, solutions exist in which the interface is
everywhere approximately parallel to the moving plates. Another advantage of the
Couette flow case is that it gives a well-defined macroscopic dynamic wetting angle
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which, since the interface between the two contact lines is nearly straight, is simply the
midchannel angle of the interface or the average angle of the interface from wetting
line to wetting line. In other geometries, the macroscopic or dynamic wetting angle
can be harder to define. For example, in capillary rise or in droplet spreading the
macroscopic dynamic wetting angle sometimes has to be determined indirectly from
the macroscopic interfacial curvature (Hocking 1982).

We start by discussing the various analytical and numerical methods. Two-
dimensional results are then given. Flow fields are shown, but the main emphasis
is on determining the onset of instability (entrainment) as characterized by either
a critical capillary number (µUcr/σ , where µ is viscosity, σ is surface tension and
Ucr is the critical velocity at which entrainment first occurs) or critical macroscopic
dynamic angle. Stability limits are found as a function of inner/outer length scale
ratio (slip length divided by channel width) and, to a limited extent, gravity level.
Both when stable and unstable, the interface can be characterized in terms of a time-
dependent macroscopic wetting angle. When stable, the flow evolves toward a steady
macroscopic angle. When unstable, the macroscopic angle evolves to 180◦. However,
the maximum stable macroscopic angle is generally, as will be documented for the
Couette-flow case, well short of 180◦.

We then present three-dimensional tipstreaming results. The geometry used for these
calculations is case 3, the driven cavity. To generate three-dimensional tipstreaming,
it is necessary for the fluids to have significantly different viscosities (Grace 1982).
The three-dimensional calculations demonstrate three-dimensional tipstreaming at
a viscosity ratio of 10 to 1. Some of these calculations are initiated as nearly
two-dimensional and show the evolution of small three-dimensional disturbances to
tipstreaming. Some three-dimensional critical capillary numbers are calculated, and
they are found to be extremely close to those found for two-dimensional instability.

2. Model two-dimensional equations
The two-dimensional model flow for case 1 is shown in figure 1. Cases 2 and 3 are

topologically similar. Flow geometries for these cases are indicated in figures 13 and
15. The bottom and top plates are at y = 0 and H . The interface separating them is
at x = h(y). The fluid densities differ by ρδ . The gravity vector g points from left to
right, towards the denser fluid.

2.1. The quasi-parallel equations

These equations are applied only to case 1, for which the fluids are equiviscous with
viscosity µ, and the plate speeds are +U0 (bottom) and −U0 (top). The two plates
have opposite wettability so that when the fluid is motionless the interface is a straight
line angling from plate to plate. The flow that arises from these conditions produces
an antisymmetric interface. The centrepoint of the interface lies at x = 0.

In the leftwards fluid, the quasi-parallel momentum equation is

µ
∂2ul

∂y2
=

∂pl

∂x
+ 1

2
ρδg. (2.1a)

In the rightwards it is

µ
∂2ur

∂y2
=

∂pr

∂x
− 1

2
ρδg, (2.1b)
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p is the pressure, u the horizontal velocity. The horizontal velocity boundary condition
at the lower plate is

u − U0 = εs

∂u

∂y
, (2.2)

where εs is the slip length. The interfacial velocity and tangential stress boundary
conditions are

ul(h) = ur(h), (2.3)

∂ul

∂y

∣∣∣
h
=

∂ur

∂y

∣∣∣
h
, (2.4)

and the upper plate horizontal velocity boundary condition is

u + U0 = −εs

∂u

∂y
. (2.5)

There are two conservation conditions. The y-integrated horizontal flux of each liquid
must be zero.

The interfacial normal stress condition is

σκ = pr − pl, (2.6)

where σ is the surface tension and κ the curvature. This can be differentiated in order
to find the x-variation of the interface shape:

σ
dκ

dx
=

dpr

dx
− dpl

dx
. (2.7a)

Define the interface arclength coordinate s so that it increases with decreasing y

(increases as one moves along the interface from channel top to bottom). Noting that
x and the interface arclength s are then asymptotically equivalent as the interface
angle approaches 180◦, instead of (2.7a) we use

σ
dκ

ds
=

dpr

dx
− dpl

dx
. (2.7b)

The ad hoc substitution of s for x on the left-hand side of (2.7b) turns out to allow
the application of the quasi-parallel model to wetting angles less than 90◦.† Changes
in interface angle are calculated from

dθ

ds
= κ, (2.8)

where θ is the angle and where again s is used. The interface position is found from

dy

ds
= − sin(θ),

dx

ds
= − cos(θ). (2.9)

† Results from (2.7a) and (2.7b) are in good agreement down to a wetting angle of about 150◦.
They then diverge, but remain qualitatively similar to about 120◦. As the wetting angle approaches
90◦, results from (2.7a) fail; for example, the critical capillary number calculated using it goes to
infinity. Results from (2.7b) appear to remain useful even to wetting angles of 30◦. Why this is so
is unclear. The portion of the interface that is at an angle less than 90◦ is fairly small. It may be
that once the interface angle is past 90◦ the pressure difference across the interface is dominated
by a relatively large pressure in the fluid next to the wall and that this pressure is adequately, even
though very crudely, captured by the lubrication equations.
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The solutions to the momentum equations are

ul =
1

µ

(
Al + Bly + 1

2
pl,xy

2 + 1
4
ρδgy2

)
, (2.10a)

ur =
1

µ

(
Ar + Bry + 1

2
pr,xy

2 − 1
4
ρδgy2

)
. (2.10b)

with Al, Bl, pl,x , Ar, Br and pr,x found through the system of equations

Al − εsBl = µU0, (2.11a)

Al + hBl +
1
2
h2pl,x − Ar − hBr − 1

2
h2pr,x = − 1

2
ρδgh2, (2.11b)

Bl + hpl,x − Br − hpr,x = −ρδgh, (2.11c)

Ar + (H + εs)Br +
(

1
2
H 2 + εsH

)
pr,x = −µU0 + 1

2

(
1
2
H 2 + εsH

)
ρδg, (2.11d)

hAl +
1
2
h2Bl +

1
6
h3pl,x = − 1

12
ρδgh3, (2.11e)

(H − h)Ar + 1
2
(H 2 − h2)Br + 1

6
(H 3 − h3)pr,x = 1

12
ρδg(H 3 − h3). (2.11f )

From this pl,x and pr,x , the x-derivatives of pl and pr, are found as functions of h.
Equations (2.7b), (2.8) and (2.9) can then be used to advance the curvature, interface
angle and h as a function of x.

Since the interface is antisymmetric about x = 0, it need be calculated only
for positive x. The boundary conditions at x = 0 are s =0, h = H/2 and κ = 0.
Equations (2.7b)–(2.9) were solved using the modified Euler method. A non-uniform
grid was used with very fine spacing near h equal to 0. h was solved for by starting
at x = 0 with a given macroscopic interface angle. Integration was stopped at h =0
and the found microscopic contact angle recorded as a function of the macroscopic
angle and the other parameters.

The quasi-parallel equations are straightforward and rapid to solve. There were no
difficulties in obtaining results down to and below εs =10−7H .

2.2. Fourier series method

This solves the full Stokes equations using a Fourier series approach. It is valid
provided h(y) is single valued and provided the two fluids are equiviscous. Given that,
it is applicable to all three flow geometries. The flow is taken to be periodic with
period L, with L large enough so that interactions between menisci are negligible.
With equiviscous fluids the Stokes equations can be written for the whole domain as

µ

(
∂2u

∂x2
+

∂2u

∂y2

)
=

∂p

∂x
− σκx(y, t)δ(x − h(y, t)) − 1

2
gρδK(x − h(y, t)), (2.12a)

µ

(
∂2v

∂x2
+

∂2u

∂y2

)
=

∂p

∂y
− σκy(y, t)δ(x − h(y, t)), (2.12b)

∂u

∂x
+

∂v

∂y
=0. (2.12c)

K(ζ ) is a variant of the Heaviside function, equalling ±1 and taking the sign of ζ .
The delta function multiplied by the interface curvature multiplied by the surface
tension gives the interfacial forcing. σκx and σκy are the x and y components of the
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forcing:

κx =
κ√

1 + h2
y

, κy = − hyκ√
1 + h2

y

, (2.13)

h(y, t) obeys

∂h

∂t
= u − vhy, (2.14)

where the y subscript on h indicates the partial derivative. Note that the density has
period 2L. g reverses sign with period L in order to force the flow with the proper
period and to keep the flow gravitationally stable.

The flow is divided into two parts, the parallel flow due to the moving plates and
the periodic flow due to the interfacial forcing. The parallel flow is given by

Up = UF
B −

(
2UF

T + 4UF
B

)
(y/H ) +

(
3UF

T + 3UF
B

)
(y/H )2, (2.15a)

where the top and bottom fluid speeds UF
T and UF

B are related to the wall speeds UW
T

and UW
B through the equations

(4λ + 1)UF
B + (2λ)UF

T = UW
B , (2λ)UF

B + (4λ + 1)UF
T = UW

T , (2.15b)

where λ= εs/H . The Fourier transform of a ‘line’ delta function is∫ +L/2

−L/2

δ(x − h(y, t))e−iαmxdx =
√

1 + h2
ye

−iαmh(y) (2.16)

Multiplying equations (2.12a)–(2.12b) by e−iαmx and integrating yields

µ

(
d2um

dy2
− (αm)2um

)
= iαmpm − σκ

L
e−iαmh − igρδ

αmL
(cos(αmL/2) − e−iαmh), (2.17a)

µ

(
d2vm

dy2
− (αm)2vm

)
=

dpm

dy
+

hyσκ

L
e−iαmh. (2.17b)

These can be combined with the transformed continuity equation to yield the stream-
function equation

µ

(
d4ψm

dy4
− 2(αm)2

d2ψm

dy2
+ (αm)4ψm

)
=

1

L

(
σ

dκ

dy
− gρδ

dh

dy

)
e−iαmh. (2.18)

The boundary conditions are

ψm(0) = ψm(H ) = 0,
dψm

dy

∣∣∣∣
0

= +εs

d2ψm

dy2

∣∣∣∣
0

,
dψm

dy

∣∣∣∣
H

= −εs

d2ψm

dy2

∣∣∣∣
H

. (2.19)

These equations were solved by discretizing on a non-uniform grid that had closer
spacing near the walls. About 100–400 grid points were used and about 100–
400 Fourier functions. The physical velocities were found at discrete hn(yn, t) by
summation and the interface shape advanced in time via (2.14).

Because of the non-uniform grid, there was no particular difficulty encountered in
finding results down to εs = 10−4H . Calculations were time-accurate so some searching
was required to find critical capillary numbers. The best way is to start above critical
Ca and work down towards it. Just above criticality, interfaces have a near-equilibrium
point through which they advance very slowly. Their minimum rate of advance is a
linear function of Ca − Cacr and the deviation of the macroscopic interface angle at
which this minimum speed occurs from the critical macroscopic angle is also linear.
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Thus, two supercritical calculations are sufficient to find both the critical capillary
number and the critical macroscopic angle.

2.3. Phase-field equations

Two-and three-dimensional Stokes flow computations were made using a phase-
field diffuse-interface method. Details of phase-field modelling and its applicability
to moving contact lines are given in Seppecher (1996), Jacqmin (1999, 2000), and
Pismen & Pomeau (2000). The phase-field interface model goes back to van der Waals
(1893), who hypothesized finite-thickness fluid interfaces with excess free energy, or
surface tension, proportional to the integral through the interface of |∇C|2. C(x, y),
the phase function, represents the amount locally present of each fluid. The total free
energy of the liquid mixture is taken to be of the form

F =

∫ (
1
2
α
(
∇C)2 + βf (C)

)
dV. (2.20)

f (C) is a nonlinear function of C with two minima corresponding to the two stable
phases. Away from interfaces, C tends to these two minimizing values. The interfaces
have a structure determined asymptotically by the minimization of interfacial free
energy.

The chemical potential corresponding to F is

φ = βf ′(C) − α∇2C. (2.21)

In interface regions, it is asymptotically equal to the local field curvature multiplied
by the surface tension. For the calculations, two different forms of f ′(C) have been
used, f ′

1 = 4C(C2 − 1/4) and f ′
2 = −C + γC/(1/4 − C2). The second is a double-

obstacle potential with singularities at ±1/2. This form is more difficult to use than
the first, but it has advantages in that it gives sharper interfaces and allows less
interphase solubility. Asymptotically, meaning as interface thickness goes to zero, the
two formulations should give equivalent results. In the calculations, γ was assigned a
value of 0.0032. This gives spinodal points (f ′′(C) = 0) at C = ±0.46.

The equations solved consist of the Stokes equations forced by the diffuse-interface
surface tension

µ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
=

∂p

∂x
− φ

∂C

∂x
− ρg, (2.22a)

µ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
=

∂p

∂y
− φ

∂C

∂y
, (2.22b)

µ

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
=

∂p

∂z
− φ

∂C

∂z
, (2.22c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.22d)

plus the advective Cahn–Hilliard equation for the evolution of the phase function

DC

Dt
= ∇ · D(C)∇φ. (2.23)

φ∇C gives the interfacial capillary forcing. D(C) is the mobility. When using f ′
1, D

was set to a constant; for f ′
2, D was variable and in the vicinity of ±1/2 was set

proportional to 1/f ′′
2 . The diffusive lengthscale relevant to contact line dynamics is√

µD(0) (Jacqmin 2000).
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Equations (2.22–2.23) were solved in a long rectangle with aspect ratios of six or
eight to one. The ends of the box were treated as no-stress boundaries. The moving
sides were assigned the same Navier slip condition as used in the quasi-parallel
analysis. This was large enough to dominate the effective slip given by the phase-field
diffusion. Standard finite-difference methods were used for the velocities. The C field
was discretized using a fourth-order-accurate mehrstellen method (Jacqmin 1999).

The same approach to finding the critical capillary numbers and macroscopic angles
was used as for the Fourier series solutions. A problem with phase-field calculations
is that interface energies are somewhat dependent on interface position within the
computational grid. The result can be an unsmooth advance of the interface as it
moves over what becomes effectively a ‘rough’ or ‘dirty’ solid wall. This dependence
on grid position decays exponentially with the number of grid points through the
interface (Jacqmin 1999). It can therefore be removed if the number of grid points
in a computation is increased sufficiently, at the cost, however, of sometimes greatly
increased computational times. Grid effects do not usually matter when qualitative
results are required, for example, for three-dimensional tipstreaming, but they have
occasionally caused problems when trying to make accurate comparisons to quasi-
parallel and Fourier series results.

2.4. Non-dimensional parameters

Non-dimensional parameters for the quasi-parallel model are microscopic contact
angle, macroscopic angle, capillary number Ca = U0µ/σ , where U0 is a characteristic
wall velocity, Bond number B = ρδgH 2/σ , and the microscopic to macroscopic length
ratio λ= εs/H . Of these five, four are independent. The two-dimensional Stokes-
flow/phase-field model adds three more, box aspect ratio, the Cahn number εw/H ,
where εw is a measure of diffuse interface thickness, and a Péclet number based on
interfacial thickness, U0ε

2
w/Dσ . Calculations presented here have been made with

Cahn numbers from 0.125 to 0.03125 and with Péclet numbers from 4 to 100. For the
most part, results of interest have been found to be insensitive to variations in these
parameters.

3. Non-uniqueness and criticality
For the most part, in the two-dimensional calculations we are interested in finding

boundaries for the existence of steady-state solutions. These boundaries could be
mapped in many ways, but the main concern is finding critical velocities or critical
Ca. Another mapping of interest is critical macroscopic angle. These two parameters
are functions of microscopic wetting angle, Bo, λ and flow geometry.

Results from the quasi-parallel equations are illuminating in these matters because
they show the existence not only of stable steady states, but of unstable, and that
the critical velocity or critical macroscopic angle mark the boundary between these
two types of solution. Figure 2 shows a typical result for shear flow for macroscopic
angle as a function of capillary number. For this θmic = 135◦, λ= 10−5 and Bo =0. A
maximum capillary number exists beyond which there is no solution. For the case
shown in figure 2, this critical Ca is 0.00359 and the corresponding critical macroscopic
angle is 165◦. Above the critical macroscopic angle, the solution branch moves back
toward a lower capillary number. This upper branch of solutions is unstable and is
unfindable via the time-stepping solution methods used for the Fourier-transform and
phase-field calculations. Tabulation of the critical capillary number and macroscopic
angle thus delineates the two-dimensional stability limits of these flows.
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Figure 2. Macroscopic interface angle as a function of capillary number, for microscopic
contact angle of 135◦. Bo= 0, λ= 10−5. Critical Ca about 0.00359, critical θmac about 165◦.
Data from quasi-parallel model.
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Figure 3. Critical interface corresponding to the critical point of figure 2. θmac about 165◦,
θmic = 135◦.

4. Shear flow
Figure 3 shows a typical shear flow critical interface shape, from which it can be

seen that most of the interface away from the contact lines is close to its macroscopic
centre-channel angle. This is the critical interface for the calculation discussed in the
previous section. Of greatest interest is finding critical Ca and θmac as a function of
flow parameters. Figure 4 shows quasi-parallel results for λ=10−7, 10−5, 0.001 and 0.1.
The critical capillary number decreases with decreasing λ while critical θmac increases.
Both critical Ca and θmac show what appears to be an approximately logarithmic
dependence on λ.

Critical θmac is relatively weakly dependent on θmic. Very roughly, at wetting angles
away from 180◦, instability sets in at about θmac =150◦. Instability is caused by the
increased global viscous forces that are brought to bear as θmac increases. The viscous-
induced pressure in the two tongues of receding fluid increases with increasing θmac
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Figure 4. Critical capillary number and critical macroscopic angle as functions of microscopic
contact angle, for − · −, λ= 0.1; ---, 0.001; – – –, 10−5; —, 10−7, according to the quasi-parallel
analysis.
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Figure 5. Critical capillary number and macroscopic angle as functions of microscopic contact
angle for λ= 0.1. Bond number = 0. Quasi-parallel results are given by the solid line, Fourier
series results by the circles, and phase-field results by the triangles.

until the interface can no longer be curved enough to resist it (the integral of the
curvature is necessarily bounded).

Figures 5, 6 and 7 compare quasi-parallel, Fourier series and phase-field results for
critical Ca and θmac for, respectively, λ=0.1, 0.01 and 0.001. Phase-field results are
shown only in the first two figures. Agreement is quite good.

Figure 8 shows the evolution of an unstable flow with Ca = 0.0274, θmic = 90◦ and
λ=0.001. Critical Ca is 0.0273, so the flow is very slightly supercritical. The flow is
calculated using the Fourier series method. For comparison, the figure also shows the
critical interface (the dashed line) as calculated from the quasi-parallel model. The
interface moves quickly to its near-equilibrium position, then advances very slowly
until it passes it, then moves quickly again. Its speed of advance then asymptotes
to a significant fraction of the plate speed. Its near-equilibrium position and the
quasi-parallel critical interface are very close to each other.

5. Gravity effects
Gravity can significantly change critical Ca and θmic. This is true even at small

λ, in the asymptotic regime where it is sometimes claimed that macroscopic effects
can be ignored. Figure 9 shows quasi-parallel results for λ= 10−7. At Bo=1, Cacr is
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Figure 6. Critical capillary number and macroscopic angle as functions of microscopic contact
angle for λ= 0.01. Bond number = 0. Quasi-parallel results are given by the solid line, Fourier
series results by the circles, and phase-field results by the triangles.
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Figure 7. Critical capillary number and macroscopic angle as functions of microscopic contact
angle for λ= 0.001. Bond number = 0. Quasi-parallel results are given by the solid line, Fourier
series results by the circles.

increased by about 10% from Bo = 0; at Bo =4, it is increased by about 25%. At
high enough Cacr critical θmac is increased slightly from the zero-gravity case. As the
wetting angle approaches 180◦, however, stable wetting velocities become so small
that gravity effects dominate over flow effects and the critical interface flattens. Thus,
θmac diverges there from the zero-gravity case. With no gravity, as θmic goes to 180◦,
θmac also approaches 180◦. For Bo= 1, the macroscopic angle instead asymptotes to a
slope of about 141◦, for Bo = 4, about 112◦.

Figure 10 compares quasi-parallel Fourier series and phase-field critical Ca and
θmac results for Bo =1 for the case of λ= 0.01. Again, agreement among the three
approaches is very good.

For higher Bond number, wetting failure is by film formation. This is shown in
figure 11, which is similar to figure 8, but at a Bond number of 10. The critical quasi-
parallel and Fourier series interfaces are shown together with an evolving supercritical
interface at the start of film formation. Because of the gravity-induced flatness of
parts of the interface, the quasi-parallel and Fourier series interfaces are no longer in
quantitative agreement. Cacr is 0.0676 by the quasi-parallel analysis and about 0.0491
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Figure 8. Evolution of an unstable interface calculated via the Fourier series method.
Parameters are Ca= 0.0274, Bo= 0, λ= 0.001 and wetting angle θmic = 90◦. The flow is just
past critical. The critical interface according to the quasi-parallel model is shown by the
dashed line. The interface is initially flat. It is shown at non-dimensional times 0, 40, 200, 600,
1000, 1400, 1800 and 2200. (In this non-dimensionalization, the plate-speeds are equal to the
capillary number.) The interface advances very slowly through its near-equilibrium position.
The channel is infinitely long with interfaces spaced 8 units apart.
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Figure 9. Critical capillary number and macroscopic angle as functions of microscopic contact
angle for λ= 10−7 and Bond numbers of 0 (solid curves), 1 (long-dashed curves) and 4 (dashed
curves).

by the Fourier series method. The Fourier series simulation ends when the interface
height y = h(x) becomes multi-valued.

6. Driven capillary-rise flow and driven cavity flow
These flows were considered in order to see how changes in flow configurations

or boundary conditions affect the onset of contact-line instability. They also provide
a transition to the three-dimensional driven cavity flows considered next. The issue
of how and whether contact line stability can be enhanced by flow geometry is
a very practical one. For example, the maximum stable speed of wetting sets the
processing rate for many industrial coating operations. Simpkins & Kuck (2003) and
Blake, Bracke & Shikhmurzaev (1999) have discussed two industrially related coating
methods that appear to increase wetting stability through the application of local
pressure gradients.
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Figure 10. Critical capillary number and macroscopic angle as functions of microscopic
contact angle for λ= 0.01. Bond number = 1. Quasi-parallel results are given by the solid line,
Fourier series results by the circles, and phase-field results by the triangles.
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Figure 11. Film formation at Bo= 10, λ= 0.001, θmic =90◦. The dashed line shows the
quasi-parallel critical interface (Ca= 0.0676, θmac =109.5◦), the dotted line the critical interface
calculated using Fourier series (Ca= 0.04914 , θmac = 122.57◦), and the solid line the unsteady
supercritical interface (Ca= 0.050), also calculated using Fourier series, at an early stage of
film formation.

As with the shear-flow case, we consider in this section only equiviscous flows.
Figure 12 shows Fourier series and phase-field results for the stability limits for the
two flows as a function of equilibrium wetting angle. λ is set to 0.01. As before,
the agreement between the phase-field approach and the nearly exact Fourier series
solution is quite good. The phase-field solution has a grid-point resolution of 96 × 768
and the diffuseness of the interface is such that the Cahn number is 1/24.

Figure 13 compares the steady-state interface shapes and streamfunctions of the two
solution methods for driven-capillary flow at Ca = 0.12 and an equilibrium wetting
angle (of the lower flow) of 30◦. Again, it can be seen that the two approaches are in
good agreement. The details of the inner flow field, which changes considerably for
sharp versus diffuse models, have little effect on the larger-scale flows and interface
shapes.

Comparing stability limits among the flows (see figure 6 for the shear-flow case), we
see a considerable variation of critical capillary number. The shear flow, for which the
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(a) (b)

Figure 12. Critical capillary number as a function of microscopic contact angle for λ= 0.01.
(a) Driven capillary flow; (b) driven cavity flow. Bond number = 0. Fourier results are given
by the circles, phase-field results by the triangles.

(a) (b)

Figure 13. An example of interface shapes and flow fields as calculated using (a) the sharp-
interface. Fourier series approach; (b) the phase-field method. The flow is driven-capillary at
a Ca = 0.12 and with an equilibrium wetting angle of the lower fluid of 30◦. Despite local
differences at the wetting line, the two flows are globally in very good agreement.

oppositely moving walls tend most strongly of the three cases to stretch the interface,
is the least stable. For the 90◦ equilibrium wetting angle, its critical capillary number
is about 0.04, while for the driven cavity it is 0.06 and for the driven-capillary flow
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0.08. At 30◦ the Cacr are, respectively, 0.09, 0.12 and 0.15. The driven-capillary case
thus appears to be roughly twice as stable as the shear flow.

However, the question comes up as to whether or not this difference is due in part to
the large value of λ and whether this difference becomes smaller as λ decreases (as the
flow enters the asymptotic regime of λ → 0). Calculations were therefore made with
the Fourier series method for λ= 0.001. The results for the shear-flow case were given
in figure 7. The shear-flow result for 90◦ is Cacr = 0.0272 while for the driven cavity
and driven-capillary flows the critical Ca are, respectively, 0.0296 and 0.0333. The
percentage difference between these two and the shear flow case declines so rapidly
from the case λ= 0.01 that it appears it must go to zero as λ → 0. We tentatively
hypothesize that stabilization of wetting lines depends on physics outside that of
the theory of incompressible and mutually insoluble fluids. A theory of high-speed
wetting that incorporates solubility (of gas in liquid) has been proposed by Jacqmin
(2002).

7. High-Bond-number three-dimensional tipstreaming as a
quasi-two-dimensional process

It has usually (see discussion by Kistler 1993) been assumed that wetting fails only
when the measurable macroscopic contact angle reaches 180◦. By contrast, we have
found that, in liquid–liquid flows, wetting failure occurs well before this. Associated
with this, we have found that contact-line speed in an unstable two-dimensional
flow is a non-monotonic function of macroscopic (or dynamic) angle – the minimum
contact line speed is found at a quasi-equilibrium position; after passing that position
the contact line speed increases.

Our phase-field calculations have found a high-Bond-number three-dimensional
tipstreaming regime which seems to be at least partly understandable in these terms.
They indicate that long-wave corrugations to an initially two-dimensional contact line
can be unstable because the lowered parts of the interface have increased dynamic
contact angle and associated with that an increased contact line speed. Contrariwise,
the heightened parts have lower angle and therefore lowered speed. The corrugations
thus increase in amplitude and, as the calculations have shown, eventually lead to
tipstreaming.

From reports of others (Grace 1982) and our own three-dimensional calculations,
for three-dimensional tipstreaming, the receding fluid must be considerably less viscous
than the advancing. We consider here the case of a viscosity ratio of 0.1. There is no
longer an advantage to considering oppositely moving walls (since no symmetry or
antisymmetry is possible) so instead in these calculations only one wall is moving, the
driven cavity case. Figure 14 shows the evolution of tipstreaming in three-dimensional
two-phase flow in a box. In this view, all 6 walls are outlined. The front vertical wall
is the moving wall. The wall opposite to it is motionless with no-stress conditions.
The top and bottom walls are also no-stress. The rearward sidewall is no-slip while
the frontward is actually a plane of symmetry. The no-slip sidewall introduces an
asymmetry to the flow that seeds the tipstreaming. Amelioration of wetting and
splitting singularities is provided by phase-field diffusion. The capillary number of
the flow is 0.51, just above critical, the Bond number is 27.7, the Cahn number 0.059
and the Péclet number 2.63. λ (provided by the phase-field diffusion) is 0.025. The
critical capillary number is higher than for the two-dimensional calculations because
of the reduced viscosity of the receding fluid. The resolution of the computation was
48 side-to-side × 24 front-to-back × 96.
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(a) (b) (c) (d) (e)

Figure 14. Three-dimensional film intrusion/tipstreaming. The front wall moves down,
dragging a film of the upper lighter fluid. The frontward wall and rear sidewall are no-slip
while the front side surface is a surface of symmetry. The initial breaking of the film (b) is
primarily two-dimensional, but from this three-dimensional tip-streaming perturbations grow
and develop (c–e). The film tips produce droplets at an approximately steady rate. The interface
is shown with two shades, the dark shade means the advancing (lower) fluid side of the interface
is facing the viewer, the light shade indicates the receding (upper) fluid. The droplets shown in
light shade are attached to the front moving wall and are moving downward. The dark shaded
droplets are attached to either the bottom surface or the rear wall, or are free-floating. After
reaching the bottom of the container the droplets return because of buoyancy. The equilibrium
contact angle for this calculation was set to 90◦.

The flow is initially nearly two-dimensional (figure 14a). The no-slip rear sidewall
introduces a perturbation because of drag that causes the contact line to move
downward more slowly there. After a while, interface corrugations begin to spread
from the rear sidewall region. These grow until the interface splits (figure 14b) in
a quasi two-dimensional manner. After that, there is a quick transformation to tip
streaming (figure 14c). Figures 14(d) and 14(e) show that the tipstreaming points can
vary with time in number and length.

Another calculation, available on DVD from the author or the JFM Editorial Office,
shows flow development when the rear sidewall, like the front, is made a plane of
symmetry. Transition to tipstreaming is much delayed. As before, the flow is initially
two-dimensional. As with the two-dimensional calculations (figures 8 and 11) the
moving wall drags the interface down quickly at first, but then very slowly through its
quasi-equilibrium position. Buoyancy-induced film instability then causes a cylindrical
drop to detach and move down with the wall. When it reaches the bottom of the box
it enters the bulk of the fluid and begins to rise. Rayleigh instability then takes over
and the cylinder divides into droplets. As the droplets rise toward the surface they
perturb the flow and contact-line corrugations begin to grow. The droplets reach the
interface and the resulting large disturbance causes rapid wave growth at the contact
line. This growth culminates in the tipstreaming instability which then continues in a
quasi-periodic fashion.

Other calculations show that the range of capillary number that separates onset of
instability from complete wetting failure (no or almost no wetting by the advancing
fluid) is fairly narrow – about 0.04 for the viscosity ratio being considered. As
the capillary number rises above critical, splitting instabilities (as shown in figure 14)
become more important. There can be alternations between tipstreaming and splitting.
As the capillary number is increased, tipstreaming alone is insufficient to prevent the
interface from moving downward. The interface then elongates while also tipstreaming



Wetting failure 225

(a) (b) (c) (d) (e) ( f ) (g)

Figure 15. (a) The two-dimensional near-critical stable interface at Ca =0.375, Bo= 10,
viscosity ratio of 0.1. Side-view shown with moving wall on left, fixed wall on right. (b–g) One
cycle of two-dimensional supercritical splitting, Ca= 0.376. Width of interface (C = −0.4 to
+0.4) is shown. Time advances from left to right.

Figure 16. Initial growth of contact line corrugations leading to three-dimensional tip-
streaming. Front view, showing the contact line on the moving wall. One-half wavelength
of the contact line is shown – the line is symmetric about the left and right edges of the figures.
Non-dimensional times shown are, from leftmost figure towards the right, 47, 57, 66, 72, 77,
80, 82 and 83. C = 0 is plotted. Ca is 0.38.

until a splitting event occurs that leaves the interface in a relatively high position
again.

Some higher resolution (12 × 32 × 128) calculations have been made of periodically
spaced tipstreaming. The calculation’s wetting angle was 90◦, the Bond number was
20, the viscosity ratio 0.1, the effective slip length, from Cahn–Hilliard diffusion, 0.02,
the Cahn number 1/15, and the cell Péclet number 4. The two-dimensional Cacr was
found to be just greater than 0.375 (about 0.3751) with a critical dynamic wetting angle
(the maximum angle of the interface) of 161.6◦. Figure 15(a) shows a side view of the
two-dimensional near-critical interface at Ca = 0.375. Figures 15(b)–15(g) show the
onset of instability through two-dimensonal splitting at Ca = 0.376. Three-dimensional
calculations were made at Ca = 0.38. They were begun with a large-amplitude three-
dimensional perturbation that led relatively quickly to tipstreaming. Figure 16 shows
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(d)

Figure 17. Drop pinch-off from tip, shown on the plane perpendicular to the tip. Interface
and velocity field are shown at four times. Moving wall on left, fixed wall on right.

a front view of the evolution of the contact line. The figure shows half a wavelength
of the line along the moving plate. Corrugations develop simultaneously with the
lowering of the line as it is dragged down with the wall. They grow slowly at first
but once the line moves to the quasi-equilibrium position they rapidly evolve to
tipstreaming. Figure 17 shows a sideview of the interface together with the velocity
field on a cut perpendicular to the tip. Four times are shown, in order to show drop
pinch-off. From this view, it appears that the less viscous fluid channels or fingers
into the more viscous. Note, however, that most of the less viscous fluid swept by the
moving wall into the channel manages to return (escape). At time 1 (figure 17a) the
flow in the finger is almost completely stopped. At time 2 (figure 17b) the interface
has elongated so that viscous forces can no longer be balanced by capillarity and
in the lower part of the finger the flow speed, forced by the moving wall, increases.
The spatially non-monotonic flow in the finger causes an indentation (figure 17c) and
then drop formation. The pinch-off, once initiated, is quite rapid. Figure 18 shows
the flow field on a cut perpendicular to the contact line’s crest. This is approximately
steady. The maximum interface slope on this cut is about 158◦, which is subcritical.
The oscillation with time of this angle is less than a degree. Figure 19 shows the
flow field in a cut parallel to the moving wall, half a computational cell distant. The
moving contact line is shown plus the velocity close to the wall. It can be seen that
the receding fluid is being diverted from the crest area into the tip. This maintains
the crest’s stability and comparative steadiness.
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Figure 18. Quasi-steady interface and velocity field on the plane perpendicular to the
contact line crest. Moving wall on left, fixed wall on right.

Figure 19. Diffuse-interface contact line and flow field near the moving wall. The upper,
receding fluid is slightly diverted from the contact-line crest (on the figure’s right-hand side)
to the line’s tip region.

An effort was made to find out if three-dimensional tipstreaming exists below
the two-dimensional instability threshold. The capillary number of the calculation
was therefore abruptly changed to 0.375, barely below critical. It was found that
tipstreaming continued and was stable. When dropped to 0.374, however, tipstreaming
quickly ceased and the flow reverted to being two-dimensional. The onset of
tipstreaming thus appears to occur almost simultaneously with two-dimensional
wetting failure.

8. Conclusions
This paper has attempted to show the feasibility and at least qualitative validity of

calculations of wetting failure. Two-dimensional calculations have been made using
three different methods and, in general, good agreement was shown amongst them.
The phase-field method was then used to investigate three-dimensional wetting failure.

Results have shown:
(i) Qualitatively, two-dimensional results show little variation with λ once λ is below

0.01. This probably also holds true in three dimensions where small-λ calculations are
not practical.

(ii) In liquid–liquid systems, wetting failure sets in well before the dynamic
(macroscopic) angle reaches 180◦.

(iii) Gravity significantly stabilizes flows against wetting failure.
(iv) From our λ= 0.001 calculations (end of § 6), change of flow boundary conditions

or flow configurations may have little effect on flow stability. This tentative conclusion
is limited to incompressible flow with insoluble fluids.
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(v) In agreement with Grace (1982), tipstreaming during wetting occurs only when
the receding fluid has much smaller viscosity than the advancing. When viscosities
are the same, wetting failure is two-dimensional.

(vi) Three-dimensional wetting failure modes include both tipstreaming and
splitting. The two modes can coexist.

(vii) Three-dimensional tipstreaming can be understood in part as a quasi-two-
dimensional phenomenon. The three-dimensional critical capillary number is very
close to the two-dimensional. In three-dimensional tipstreaming, tip regions appear to
be locally two-dimensionally supercritical, while crests appear to be locally subcritical.
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